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Abstract— Motivated by next-generation air transportation
systems, this paper investigates the relationship betweentraffic
volume and congestion in a multi-agent system, assuming that
the agents can communicate their intentions with one another.
In particular, we consider n independent mobile agents, each
assigned an origin and a destination point, and study how the
minimum time necessary to safely transfer all agents from their
origin to their destination scales with the number of agentsn.
We provide an algorithm for which the transfer time scales
logarithmically in n. This is an improvement over previous
results that rely on more conservative conflict models because
they do not leverage inter-agent cooperation to the same degree,
resulting in transfer times scaling as

√
n.

I. I NTRODUCTION

The current air transportation system (ATS) is being forced
to operate ever closer to its critical capacity, leading to
increases in both the frequency and duration of delays. This
strain is expected to worsen alongside a projected two- to
three- fold increase in the demand for air travel [1]. It is
widely acknowledged the current ATS lacks the operational
scalability to meet this demand, and that there is an urgent
need for sweeping change in how the National Airspace
(NAS) is managed. To achieve improvements in system
efficiency, while safely increasing the capacity of the NAS,
there has been a growing movement to embrace the notion of
free-flight and afford aircraft greater autonomy in planning
routes and during flight [1]. Such a move would represent
an epoch-defining shift from predominantly centralized, pre-
planned operations under the close supervision of human
air-traffic controllers, to more flexible, primarily autonomous
operations relying on inter-agent communication and coor-
dination to maintain a well-functioning airspace.

While an autonomous airspace holds the promise to ad-
dress many of the issues that plague the current ATS, the
task of instituting new regulatory policies is complicatedby
the need to ensure safety on a system-wide level, and by the
wide assortment of feasible regulatory policies. In order to
make informed decisions about which next-gen policies to
put in place, it is necessary to have a precise understanding
of the performance that is and, perhaps more importantly,
is not possible in such systems. In other words, we must
establish quantifiable relationships between key metrics that
measure how efficiently the airspace is used, such as delay
and throughput, and environmental parameters, such as traffic
intensity, navigational uncertainty, and the onset of inclement
weather, that may degrade during operation.
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Research efforts aimed at coordinating the motion of
multiple autonomous, mobile agents have yielded an array of
techniques for moving agents between specified points in a
shared workspace, while avoiding collisions (see, for exam-
ple, [2]–[9]). Often, it is prudent to consider the complexity
of these methods from various perspectives, including, for
example, the computational complexity of the algorithm, for
which a number of results have been developed (see [10]
for a timeline). Recently, researchers have begun to address
other facets of complexity, including the communication
complexity (the amount of information that must be gathered
and or shared among agents) and time complexity (the
actual time required to complete the task) [11]. In [10],
the authors investigate how the time required to transfer
n agents between specified origin and destination points,
without conflicts, scales as the number of agents gets large.
They consider various conflict models and assume agents do
not communicate with one another.

In many applications, including the next generation of air
transportation systems, the agents that make up the system
will have the ability to communicate with one another. In
this paper, we show that, given this added functionality,
there exists a transfer policy that is free of conflicts and
scales logarithmically in the number of agents. It is worth
reinforcing that although we are interested in determining
performance limitations associated with the traffic density in
an autonomous airspace, the discussion to follow is probably
also applicable to other domains in which large numbers of
autonomous agents navigate in a shared environment. For this
reason, we use the terms agent and aircraft interchangeably
throughout.

This paper is organized in sections. Section II provides the
formulation of the problem we consider, as well as a brief ac-
count of related work that has been reported in the literature.
Section III provides a new way to model conflicts among
agents operating in a shared environment. In Section IV, we
provide an algorithm capable of safely transferring all agents,
and, by developing bounds on the transfer time, conclude
our algorithm is optimal in an asymptotic sense. Simulation
results in Section V demonstrate the essential features of
our algorithm. Finally, Section VII closes with concluding
remarks.

II. T HE TRANSFERPROBLEM

We consider the problem of transferringn agents between
arbitrary source and destination points in a manner that
is free of conflicts and scales favorably asn gets large
[10]. Such a scenario is representative of operations in a
so-called super-density traffic environment. We label the



agents arbitrarily asA1, . . . ,An. The workspace of interest
is denoted byW and is assumed to be of fixed areaA.
The position and velocity ofA i at time t are denoted by
qi (t) ∈ R

2 and vi (t) ∈ R
2, respectively, fori = 1, . . . ,n. It

proves advantageous to conduct the analysis to follow in
terms of a polar coordinate frame. To this end, we express
qi in terms of the radial and angular component ofA i as
qi (t) = (r i (t) ,θi (t)), whereθi (t) ∈ [0,2π).

Associated with eachA i is an origin point Oi and a
destination pointDi . At some point during transfer,A i travels
along a path that starts atOi and terminates atDi . For
a particular conflict-free transfer policy,P , we define the
transfer time, TP (n), to be the total amount of time required
to transfer eachA i from Oi to Di . We define theoptimal
transfer time, T∗ (n), to be the minimum amount of time
needed to transfer eachA i from Oi to Di without conflicts.
Note thatT∗ (n) ≤ TP (n) for any P . In this paper, we are
interested in howTP (n) and T∗ (n) scale asn gets large
for various distributions of origin and destination points.
Unsurprisingly, the answer depends on how a conflict is
defined, which in turn is tied to how we relate interactions
between agents in the workspace to our notion of what
constitutes safe operation.

In [10], the authors consider various conflict models for
agents that do not share their intentions with one another,
and investigate the associated transfer time as a function of
n. A traditional approach to model conflicts in multi-agent
systems is to assign to eachA i a safety disc,M i (t), of radius
r i > 0 centered aboutqi(t). A system is said to be free of
conflicts ifM i (t)∩M j (t)= /0 for i, j = 1, . . . ,n, i 6= j, ∀t. The
question of defining safety then reduces to one of defining
r i . In [10], the authors show that if the safety radius is lower
bounded by a constant, i.e.,r i ≥ ro, thenT∗ (n) = Θ(n). In
the same work, the authors consider a safety radius with
affine dependence onvi , the velocity ofA i . They show that
if r i = r (n)+ζ|vi | whereζ > 0 is a constant,r (n)= O(1/

√
n)

from above, thenT∗ (n) = Θ(
√

n).
In the next section, we argue that, in many cases, it is

the relative, rather than the absolute, velocity of agents that
is most important when describing safety, and define the
relative-velocity conflict model that we use in the remainder
of this paper.

III. A S YSTEM MODEL

For eachA i , in addition to A i ’s position and velocity,
at each time instant, we associateA i as being in either
an inactive or active state. We exclude inactive agents
when considering the conflict condition. Therefore, it is only
among the active agents that conflicts must be avoided.
We believe this formalism makes sense in a number of
settings. For example, in air traffic control, airplanes docked
in hangars or parked at terminal gates on the ground (i.e, in
an inactive state) do not pose a safety risk to planes alreadyin
the sky until they take off (at which time they become active).
To fuse the notion of a relative-velocity-based separation
distance with the affine dependence on speed model in [10],
we propose the following generalized conflict model.

Definition 1 A transfer policy is free of conflicts, in the
general sense, if for every pair of active agents,A i , A j ,

|qi (t)−qi (t)| ≥ ro + ζ |vi |+ κ
∣

∣vi (t)−v j (t)
∣

∣ , (1)

∀i, j ∈ 1, . . . ,n,∀t, whereζ > 0 and κ > 0 are constants. ⋄
In systems where agents are able to communicate with one

another, as in the proposed next-gen ATS, it is the relative,
rather than the absolute, velocity of agents that has the
greatest impact on safety. For these systems, it is appropriate
for a first-order analysis to base the minimum separation
distance between two agents entirely on the difference in
their velocities.

Definition 2 A transfer policy is free of conflicts, in the
relative-velocity sense, if for every pair of active agents, A i ,
A j ,

|qi (t)−qi (t)| ≥ κ
∣

∣vi (t)−v j (t)
∣

∣ ,∀i, j ∈ 1, . . . ,n, ∀t, (2)

whereκ > 0 is a constant. ⋄
We use the relative-velocity conflict model throughout the

remainder of this paper.
Presentation of our algorithm requires we define the

dispersion associated with a set of points. LetS =
{O1, . . . ,On,D1, . . . ,Dn} denote the set of all origin and
destination points inW . The dispersion, denotedrdisp, is
defined to be the radius of the largest circle that can be
inscribed inW and does not contain any of the points inS
[12]. Mathematically, the dispersion can be expressed as

rdisp = max
q∈W

{min
p∈S

‖q− p‖2}. (3)

We also refer to the circle with radiusrdisp as the dispersion
circle and denote its center byqC. Moreover, for large
n (i.e., the super-density case we are interested in), the
dispersion can be shown to satisfy the asymptotic bound
rdisp = Ω(1/

√
n) [12].

IV. T HE SPIRAL ALGORITHM

In this section, we propose a new transfer algorithm,
show it is safe under the relative-velocity conflict model,
and investigate how its transfer time scales asn gets large.
The proposed algorithm, called theSPIRAL ALGORITHM, is
composed of two phases: aSPIRAL-IN phase, followed by a
SPIRAL-OUT phase. The basic idea is to have all of the agents
congregate inside the dispersion circle during theSPIRAL-IN

phase and then send them off to their respective destination
points during theSPIRAL-OUT phase. Before discussing each
phase in detail, assume, for notational simplicity, but without
loss of generality, that the workspace is a circle of radius
R, and the dispersion circle is centered at the origin. The
SPIRAL-IN and SPIRAL-OUT phases are described below.

A. Phase I:SPIRAL-IN

At the beginning of theSPIRAL-IN phase, all aircraft are in
an inactive state. This is consistent with aircraft being onthe
ground at their outset airports, such that no aircraft posesa
safety risk to another aircraft. During theSPIRAL-IN phase,
A i is active over the interval[−ti,1,0], where−ti,1 < 0 is
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Fig. 1. Geometry ofA i in W .

the time A i is activated and leaves its origin point. Once
activated,A i travels inward fromOi along a logarithmic
spiral trajectory emanating fromqC. Along this path, the
polar coordinates ofA i evolve according to the dynamics

ṙ i = −αr i (4)

θ̇i = ω, (5)

where α > 0 and ω > 0 are constants. That is,A i travels
with a speed proportional to its distance fromqC and at a
fixed angle inward from the vector tangent to its direction of
motion (see Figure 1). If we letOi = (r i,o,θi,o), then solving
(4) and (5) givesqi (0) = (r i (0) ,θi (0)), where

r i (0) = r i,oe−αti,1 (6)

θi (0) = θi,o + ωti,1. (7)

B. Phase II:SPIRAL-OUT

The SPIRAL-OUT phase begins att = 0+, just after the
SPIRAL-IN phase has ended. During theSPIRAL-OUT phase,
A i is active over the interval[0, ti,2], whereti,2 > 0 is the time
A i reaches its destination. We adopt the convention thatA i is
deactivated (i.e., returned to an inactive state) once it reaches
its destination. In the case of aircraft, this is indicativeof an
aircraft reaching its destination and landing. TheSPIRAL-
OUT phase is analogous to theSPIRAL-IN phase, with two
important exceptions. First, all agents begin theSPIRAL-OUT

phase at time zero, but, in general, are deactivated at different
times. Second, the radial coordinate ofA i increases, rather
than decreases throughout theSPIRAL-OUT phase until the
time at which an agent reaches its destination point and is
deactivated. In this case, the polar coordinates ofA i evolve
according to the dynamics

ṙ i = αr i (8)

θ̇i = ω. (9)

Note the heading angle ofA i continues to increase during
the SPIRAL-OUT phase, just as it did during theSPIRAL-
IN phase. Were we to usėθi = −ω during theSPIRAL-OUT

phase, instead of (8),A i would retrace the route it took from
Si , making it impossible to transferA i to destination points
not residing on this path.

If we let Di = (r i,d,θi,d), then solving (8) and (9) gives

r i,d = r i (0)eαti,2 (10)

θi,d = θi (0)+ ωti,2−2πk, for somek∈ Z
+. (11)

Combining (6) with (10) to eliminater i (0), and (7) with (11)
to eliminateθi (0) gives

r i,d = r i,oeα(ti,2−ti,1) (12)

θi,d = θi,o + ω(ti,2 + ti,1)−2πk, for somek∈ Z
+.(13)

It follows that

ti,2− ti,1 =
1
α

log

(

r i,d

r i,o

)

(14)

ti,2 + ti,1 =
(θd,i −θi,o+2πk)

ω
, for some k∈ Z

+. (15)

The presence of the 2πk/ω term in (11), (13), and (15) is
required to resolve the fact thatA i may have encircled the
origin one or more times (during the the transfer) with our
convention thatθi,d ∈ [0,2π). As such,ti,1 and ti,2 may be
determined by solving (14) and (15) for the smallestk∈ Z

+

such that

ti,1 ≤ (1/α) log

(

rdisp

ro

)

and (16)

θi,o ≤ ωti,1 + θi,d +2πk. (17)

The condition in (16) guaranteesA i make its way inside the
dispersion circle, while the condition in (17) addresses the
aforementioned multiple encirclements scenario.

To summarize, by solving (14) and (15), subject to (16)
and (17), we can calculate the activation time and deactiva-
tion time of each agent. It is important to note that inter-agent
coordination is critical to the success of this algorithm; agents
must schedule their motion according to a common clock in
order to ensure theSPIRAL-IN and SPIRAL-OUT phases end
and begin, respectively, at time zero. In the next section, we
show the algorithm is free of conflicts.

C. Safety of theSPIRAL-ALGORITHM

Concerning the safety of theSPIRAL ALGORITHM, we
have the following result:

Theorem 1 Under the relative-velocity conflict model,
the SPIRAL ALGORITHM is free of conflicts provided
κ ≤ 1/

√
α2 + ω2. ⋄

Proof: We begin by noting that during theSPIRAL-IN

phase, all of the active aircraft move according to (4) and (5).
During theSPIRAL-OUT phase, all of the active aircraft move
according to (8) and (9). Also, theSPIRAL-IN and SPIRAL-
OUT phases span disjoint intervals of time. Therefore, at any
time, all of the active agents move by following a common
flow field associated with either theSPIRAL-IN or SPIRAL-
OUT phase.

Now consider any two aircraft, sayA i and A j , that are
active at timet during the SPIRAL-IN phase, as shown in
Figure 2. For convenience, we suppress the dependence on
time in the relations that follow. From Figure 2, the square
of the distance separatingA i andA j is

∣

∣qi −q j
∣

∣

2
= r2

i + r2
j −2r ir jcos(θi −θ j) . (18)
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Fig. 2. Relevant geometry ofA i andA j in W .

Now consider the expression
∣

∣vi −v j
∣

∣. The speed ofA i is
given by

|vi | =

√

(

∂r i

∂t

)2

+

(

r i
∂θi

∂t

)2

= r i

√

α2 + ω2.

It follows, again from Figure 2, that the square of the
difference between the velocities ofA i andA j is

∣

∣vi −v j
∣

∣

2
=

(

α2 + ω2)(

r2
i + r2

j −2r ir jcos(θi −θ j)
)

. (19)

Combining (18) and (19) gives

∣

∣qi −q j
∣

∣ =
1√

α2 + ω2

∣

∣vi −v j
∣

∣ .

Comparing the above expression with the relative-velocity
conflict model in (2), we see the transfer is free of conflicts
providedα andω are chosen to satisfy

√

α2 + ω2 ≤ 1
κ

. (20)

A similar argument applies to any two agents that are active
during theSPIRAL-OUT phase. Therefore, for appropriately
chosenα andω, we conclude theSPIRAL-TRANSFER algo-
rithm is free of conflicts.

We remark that, in the above, the selection of
√

α2 + ω2,
and thereforeα, can be done independent ofn. In the next
section, we use this fact to develop an upper bound on the
transfer time of theSPIRAL ALGORITHM.

D. An Asymptotic Upper Bound on TSP(n)

In this subsection, we derive an upper bound onTSP(n),
the time required for theSPIRAL ALGORITHM to transfern
agents, in the case whenn is large. We have the following
result:

Theorem 2 For any distribution of origin and destination
points, TSP(n) = O(logn). ⋄

Proof: To investigate the transfer time for largen, note
that since theSPIRAL-IN and SPIRAL-OUT phases end and
begin, respectively, att = 0, the transfer time of theSPIRAL-
ALGORITHM can be expressed as

TSP(n) = max
i

ti,1 +max
i

ti,2. (21)

We begin by developing an upper bound for the leftmost
term on the right-hand side of (21). Leti = arg maxi ti,1 and
note that the term in question represents the duration of the
SPIRAL-IN phase.

Whenn is large, the dispersion satisfiesrdisp= Ω(1/
√

n).
It follows there existsno ∈ Z

+ and finitec> 0 such that for
all n≥ no the dispersion satisfiesrdisp≥ c/

√
n.

For a worst case distribution of origin and destina-
tion points, A i must travel from the workspace boundary
(r i (−ti,1) = R) to reach the edge of the dispersion circle and,
subsequently, rotate an additional 2π radians to reach the first
point that will take it toDi during theSPIRAL-OUT phase.
From the expression in (6), we can boundti,1 by

ti,1 ≤ 1
α

log

(

R
√

n
c

)

+
2π
ω

= O(logn) .

In the above, we have made use of a point that was noted
earlier, namely, thatα can be chosen to provide safety
independent ofn. A similar worst-case scenario applies in the
SPIRAL-OUT phase and leads to the boundti,2 = O(logn).
Combining this result with the bound onti,1 gives the upper
boundTSP(n) = O(logn).

For agents capable of communicating their intentions with
other agents, Theorem 2 indicates the adoption of the relative
velocity conflict model allows for a dramatic reduction in the
transfer time. The improvement in transfer time can then be
interpreted as a performance gain associated with systems
in which inter-agent communication allows for coordinated
trajectory planning.

E. An Asymptotic Lower Bound on T∗ (n)

In this subsection, we consider a lower bound onT∗ (n).
We begin by considering the transfer time complexity for a
favorable distribution of origin and destination points.

Proposition 1 Under the relative-velocity conflict model,
there exists a distribution of origin and destination points
for which T∗ (n) = Ω(1). ⋄

Proof: Consider an arrangement of origin and desti-
nation points for which∠(Di −Oi) = ∠(D j −O j) for all
i, j ∈ 1, . . . ,n. If all agents travel with finite speedVmax along
straight-line paths from their origin to their destinationpoint,
then |vi (t)− v j (t) | = 0 for all i, j, ensuring there are no
conflicts. Furthermore,T∗ (n) ≤ c1

√
A/Vmax, wherec1 is a

finite constant dependent on the geometry of the workspace,
indicating the transfer time is independent ofn.

The following result considers a lower bound onT∗ (n)
for a more challenging distribution of origin and destination
points.

Theorem 3 Under the relative-velocity conflict model, there
exists a distribution of origin and destination points for
which T∗ (n) = Ω(logn). ⋄

Proof: Consider an arrangement of origin and destina-
tion points that has the following properties:



• all source points are distributed inside a small region
such that|Si −Sj | ≤ c1/nk for all i, j, wherec1 is a con-
stant dependent on the geometry ofW . An appropriate
value fork will be specified later.

• the destination points are distributed in a separate region
of W such that|Di −D j | ≥ 2c2/

√
n for all i 6= j, where

c2 is a constant dependent on the geometry ofW .
It is noted that the distribution of origin and destination

points is well-defined even for largen providedk is suffi-
ciently large. Now assume there is a time, sayt = 0 without
loss of generality, at which a constant fraction of the agents
(i.e., m = αn, 0 < α ≤ 1) are active and inside the small
region. Number these agents asA1 throughAm based on the
order in which they reach their destination points, withti the
time at whichA i reachesDi . Then[0, tm) may be divided into
the intervals[0,t1) , [t1, t2) , . . . , [tm−1, tm), where[ti−1,ti) is the
time interval in which only agentsA i , . . . ,Am are active.

It can be shown that the safety condition in (2) implies

|qi (t2)−q j (t2) | ≤ e(t2−t1)/κ|qi (t1)−q j (t1) |, (22)

for all i, j,t1, andt2 : t1 ≤ t2 ≤min(ti , t j). Noting thatT∗ (n) is
the minimum time required to transfer all agents, we proceed
by considering two cases.

CASE 1: There exists a pair of agents, sayA i andA j , such
that|qi (t)−q j (t) | ≥ c2/

√
n for t ∈ [0,min(ti , t j)). Then since

|Si−Sj | ≤ c1/nk, it follows thatT∗ ≥ log
(

(c2/c1)nk−0.5
)

and
for k > 0.5, we haveT∗ (n) = Ω(logn).

Now assume CASE 1 does not occur. It must be that we
have the following case:

CASE 2: The agents,A1, . . . ,Am travel as a “pack”,
between the destination pointsD1 throughDm, with any two
active agents always separated by less thanc2/

√
n. However,

since|Di −D j | ≥ 2c2/
√

n for all i 6= j, the transfer of agents
is done one agent at a time, implying the duration of each of
the intervals[0,t1) , [t1, t2) , . . . , [tm−1, tm) is bounded from be-
low by c2/(Vmax

√
n). The total transfer time is then bounded

from below by (αc2
√

n)/Vmax. However, sinceTSP(n) =
O(logn), we are in contradiction with our definition ofT∗ (n)
as the minimum transfer time for a specific arrangement
of source and destination points. Therefore, CASE 1 must
always hold andT∗ = Ω(logn).

This result implies that for certain arrangements of origin
and destination points theSPIRAL ALGORITHM is to within a
constant factor of the optimal transfer policy. The following
theorem summarizes this result formally.

Theorem 4 Under the relative-velocity conflict model,
for any distribution of origin and destination points,
T∗ (n) = Θ(logn). ⋄

Proof: Given T∗ (n) ≤ TSP(n), the result follows di-
rectly from the upper bound in Theorem 2 and the lower
bound in Theorem 3.

It is noted that whileT∗ (n) = Ω(1) for certain arrange-
ments andT∗ (n) = Ω(logn) for others, it remains to cate-
gorize the transfer time for a stochastic distribution of origin
and destination points. This is the subject of ongoing work.

V. SIMULATION RESULTS

This section demonstrates the functionality of theSPIRAL

ALGORITHM for a transfer ofn = 20 agents. Figure 3 pro-
vides six snapshots that have been evenly spaced throughout
the time spanning the activation of the first agent to the
deactivation of the last agent, inclusively. For each of then
origin/destination points, the radial and angular component
were selected by sampling uniformly over[0.2,0.75] and
[0.2π), respectively. The remaining parameters used areα =
0.3 and ω = 2, so that the transfer is free of conflicts for
κ ≤ 0.4975. The parameter values used were selected so the
dispersion circle is sufficiently large and the trajectories suit-
ably distinguishable from one another to ensure readability.

VI. A R EVISED CONFLICT MODEL

Although we have argued that the relative-velocity conflict
model is appropriate for many applications, in some cases, it
is prudent to consider both the relative velocity and relative
position of agents when specifying a minimum separation.
In this section, we show that under one such conflict model,
the spiral algorithm remains free of conflicts.

Definition 3 A transfer policy is free of conflicts, in the
spatial, relative-velocity sense, if for every pair of active
agents,A i , A j ,

∣

∣qi −q j
∣

∣ ≥ κ
(q j −qi)

T

∣

∣q j −qi
∣

∣

(vi −v j) , (23)

∀i, j ∈ 1, . . . ,n, ∀t, whereκ > 0 is a constant. ⋄
Under this conflict model, the minimum separation be-

tweenA i andA j is mandated to be positive only ifA i and
A j are heading “toward” each other. We have the following
results concerning the safety of theSPIRAL ALGORITHM:

Proposition 2 Under the spatial, relative-velocity conflict
model, theSPIRAL ALGORITHM is free of conflicts forκα ≤
1. ⋄

Proof: To begin, note the safety condition can be
rewritten as

∣

∣qi (t)−q j (t)
∣

∣

2 ≥ κ(q j −qi)
T (vi (t)−v j (t)) . (24)

Consider agentsA i andA j that are active during theSPIRAL-
IN phase. Noting ˙r i = −αr i and θ̇i = ω, expanding the right-
hand side of (24) gives
κ(q j −qi)

T (vi −v j)

i = −κ(r i cosθi − r j cosθ j , r i sinθi − r j sinθ j)×
(ṙ i cosθi −ωr i sinθi − ṙ j cosθ j + ωr j sinθ j , ṙ i sinθi+

ωr i cosθi − ṙ j sinθ j −ωr j cosθ j)
T

= −κ(r i ṙ i −2αr ir j cosθiθ j + r j ṙ j −2r jr j αsinθi sinθ j)

= κ
(

α
(

r2
i + r2

j

)

−2αr ir j cos(θi −θ j)
)

= κα
∣

∣qi −q j
∣

∣

2
.

Therefore, the transfer is safe forκα ≤ 1. An similar anal-
ysis applies to agents that are active during theSPIRAL-OUT

phase; in this case, ˙r i = αr i , implying κ(q j −qi)
T (vi −v j) =

−κα
∣

∣qi −q j
∣

∣

2
, indicating motion is safe for anyα,ω,κ > 0.
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Fig. 3. Progression of agent trajectories during transfer.Green triangles denote agents that have not left their origin point. Red crosses denote agents
that have reached their destination point. Blue circles denote agents in the process of being transferred. The time instant corresponding to each snapshot
is shown at the top center of each plot. The blue lines represent agent trajectories. To provide a sense for how fast the agents move, the last 0.3s of each
agent’s trajectory is shown in varying shades of blue; the darker the shade, the more recently the point was visited.



Therefore, we are limited by safety considerations imposed
during the SPIRAL-IN phase and we conclude the spiral
transfer is safe forκα ≤ 1.

Given our interpretation of (23), the above result makes
sense; namely, since active agents never travel “toward” one
another during theSPIAL-OUT phase, there is no issue with
safety during this phase. It is noted that the safety condition
that must be satisfied during theSPIAL-IN phase does not
depend onω, and we are free to choose this quantity to
fulfill other criteria.

VII. C ONCLUSIONS ANDFUTURE DIRECTIONS

We introduced a new approach to model conflicts among
aircraft operating in a shared airspace. An algorithm was pre-
sented that transfers aircraft between origin and destination
points, is free of conflicts, and whose transfer time scales
logarithmically in the number of aircraft was presented. The
ideas reported have a number of natural extensions. Presently,
we are investigating transfer schemes in which the velocityof
aircraft deviates only minimally from a constant value (rather
than scaling linearly with distance as in our algorithm), as
this is more representative of the velocity profile that is
desired during flight. We are also interested in a dynamic
version of the transfer problem in which requests by agents to
move between points in the workspace arrive stochastically
on an ongoing basis. Finally, it remains to quantify how
closures in portions of the workspace (due, for example, to
inclement weather) and navigational uncertainty have on the
transfer time in super-density traffic environments.
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